

Dorset Beavers

Dorset
Wildlife Trust

Research findings from the Enclosed Beaver Project

CONTENTS

Background and Introduction	3
The Beavers	4
Hydrology: Water flow	6
Hydrology: Water storage	8
Hydrology: Water quality	10
Ecology: Trees	12
Ecology: Other vegetation	16
Ecology: Invertebrates	18
Ecology: Amphibians	20
Ecology: Fish	24
Ecology: Birds	26
Ecology: Bats	28
Engaging communities	30
Further research and future of the project	31
Acknowledgements and thanks	32

© James Burland

BACKGROUND AND INTRODUCTION

On 8 February 2021, Dorset Wildlife Trust introduced a pair of Eurasian beavers *Castor fiber*, to an enclosed site in west Dorset as part of a scientific study looking at the impacts beavers have on their environment.

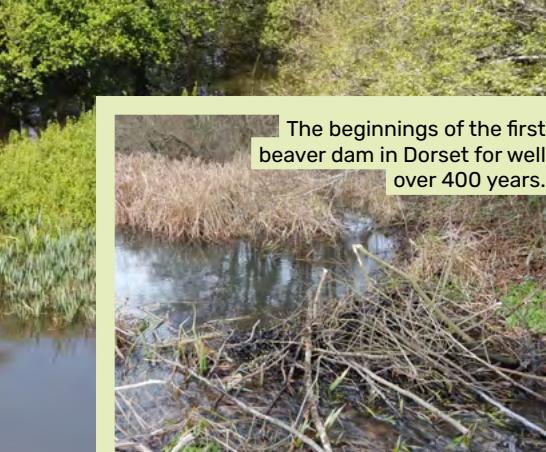
Beavers are semi-aquatic rodents who rely on freshwater. They would have been widespread across the UK's freshwater habitats before being hunted to extinction for their meat, fur and castoreum around the 16th Century. These influential mammals are making a comeback, and as of 1 October 2022 are recognised as a resident native species in England once again. Beavers are a keystone

species with their activities having a dramatic effect on other wildlife. They are often termed 'ecosystem engineers' due to their ability to modify habitats, including using their famous dam building skills to create wetlands.

The adult pair introduced to the enclosed site were the first beavers to set foot on Dorset soil for well over 400 years. A host of baseline data was collected on site prior to the beavers' arrival and both ecological and hydrological changes are being monitored to investigate the effects of beaver activity in a local landscape and to add to the research and evidence being gathered from studies elsewhere.

THE BEAVERS

© Chryssa Brown

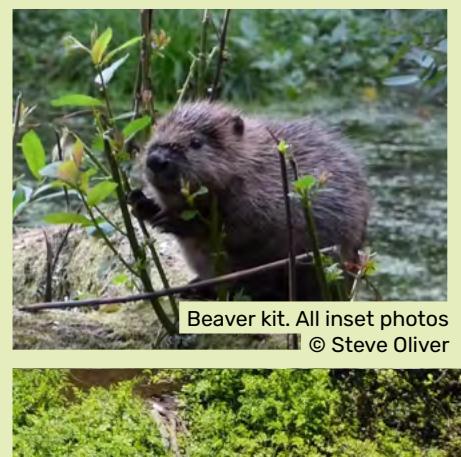


The pair of beavers introduced to the enclosed site were relocated from Scotland, under licence from NatureScot and Natural England, and have thrived in their Dorset home. Since their historic arrival, the adult male and female have built several dams, created a lodge, and have successfully bred, all of which are positive signs that they are happy and healthy in their Dorset surroundings.

The beginnings of the first beaver dam were discovered after only the

third night of the pair being on site. Beavers build dams for a purpose: to slow the flow of water and increase depths to levels in which they feel safe. The project site had some areas of deep water on arrival, but the pair clearly wanted to modify the existing habitat to suit their needs further, and this is what they did.

The early construction of a lodge within this beaver pond was another encouraging sign that the beavers were settling in. Beavers


The beginnings of the first beaver dam in Dorset for well over 400 years.

A canal, excavated by the beavers to aid safe navigation to food supplies.

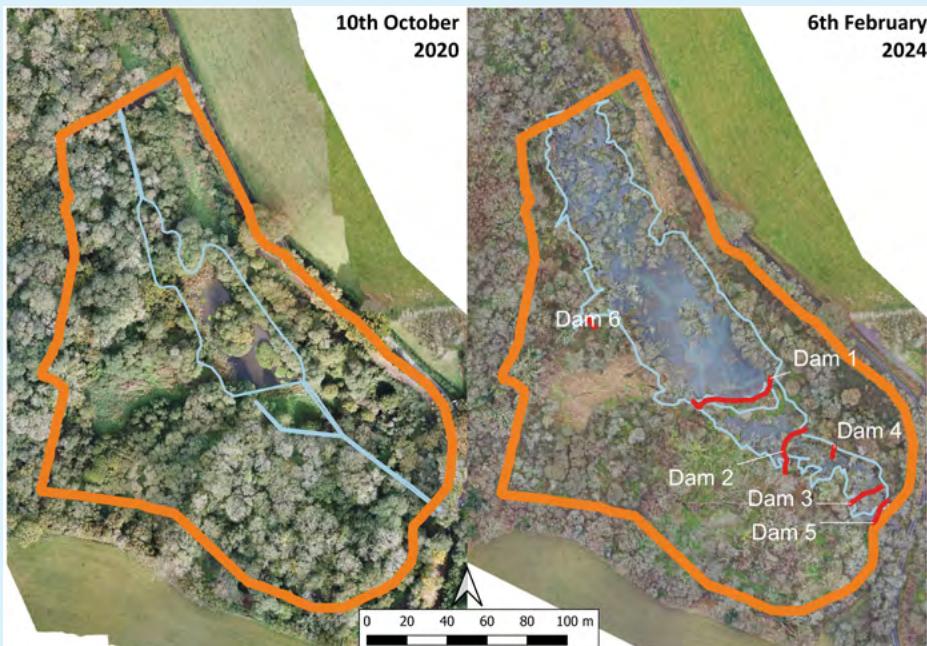
The beaver lodge has increased in size over time, catering for the safe arrival of beaver kits, who remain in the lodge for the first month of their lives.

Beaver kit. All inset photos
© Steve Oliver

are mostly nocturnal, being active between dusk and dawn, and they spend most daylight hours sleeping or resting within the safety of their underground burrow and chamber system.

The pair continued to make use of their engineering capabilities over the months that followed, creating further dams, and a beaver modified wetland started to take shape as water was being slowed and an increasing amount being stored on site.

Then, in June 2022, there was the exciting discovery of new life – the beavers had bred! The elusive sighting of the very first young beaver kit was captured on a specially deployed trail camera set up to closely monitor the animals.

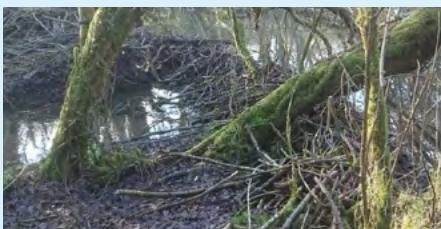

Beavers have now been thriving on site for over four years and their wetland home has continued to evolve under the influence of their activities, affecting both the hydrology and ecology of the project site.

HYDROLOGY: WATER FLOW

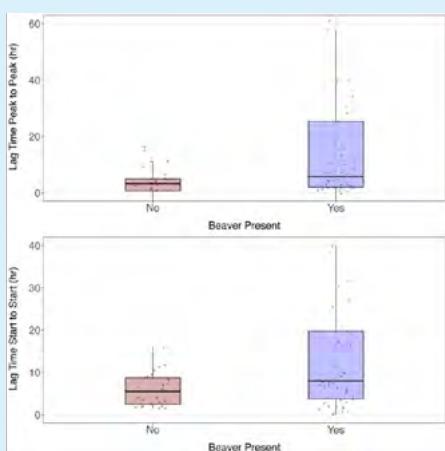
Beaver dams are dynamic structures varying in size and form, and their presence can significantly affect local hydrology. Research and analysis was undertaken by University of Exeter to determine how the establishment of beaver dams at the project site is impacting upon water flow. The network of beaver dams now present has seen the site transition into a complex wetland, consisting

of a number of ponds connected to the river.

Summary statistics showed that following the beaver introduction, water moves through the area at a slower rate. Analysis of flow regimes and storm flow response showed the hydrological response to rainstorm events was diminished with reduced storm peaks and increased lag times.


Drone images of the project site before (left) and after (right) beaver reintroduction, capturing structural change and annotated to show changes in the extent of water. Images by Alan Puttock and Kirsty Frith (University of Exeter), water and dam survey data by Steve Oliver (Dorset Wildlife Trust).

A beaver dam at the site in stormflow conditions, slowing the flow of water
(December 2023). © Kirsty Frith


Peak flows were reduced by up to 24% following beaver introduction. Lag times (i.e. the time delay) from peak rainfall to peak flow were shown to increase by 91%.

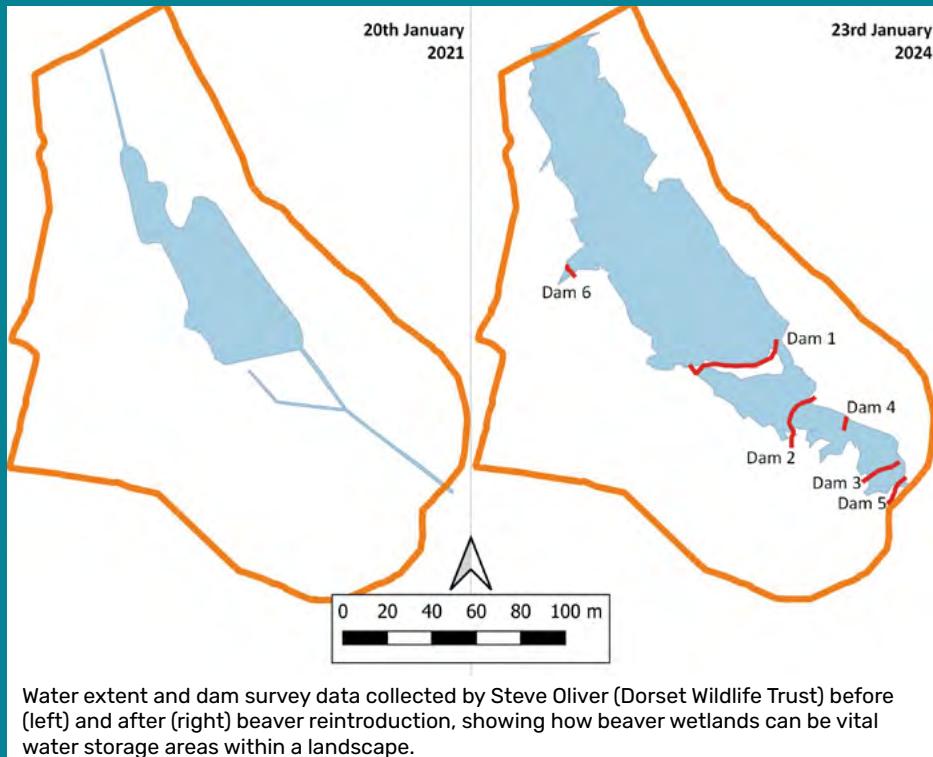
Peak flow reduction values are in the magnitude of other results from monitoring across the UK. They add to the body of evidence indicating the role beavers could play as a nature-based solution to

Example of a beaver dam at the site:
Dam 2 © Gareth Bradbury

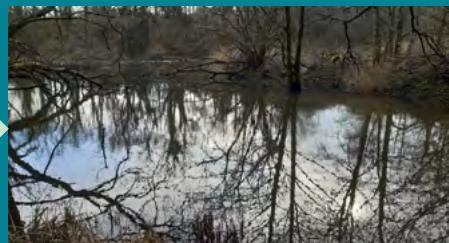
reduce downstream flooding and demonstrate that **beaver wetlands could form a valuable component of natural flood management strategies.**

Comparison of lag times in monitored events (stage) from pre and post beaver periods. Top shows change in lag times between peak rainfall to peak discharge. Bottom shows change in lag times between start of rainstorm event and start of stormflow response.

HYDROLOGY: WATER STORAGE


© Kirsty Frith & Alan Puttock, University of Exeter.

Site structural monitoring, via drone and on the ground measurements show an increase in surface water storage as a result of beaver activity. Open water habitat increased from 3,319 m² in January 2021 before beavers, to 9,323 m² in January 2024 after three years of beavers on site.

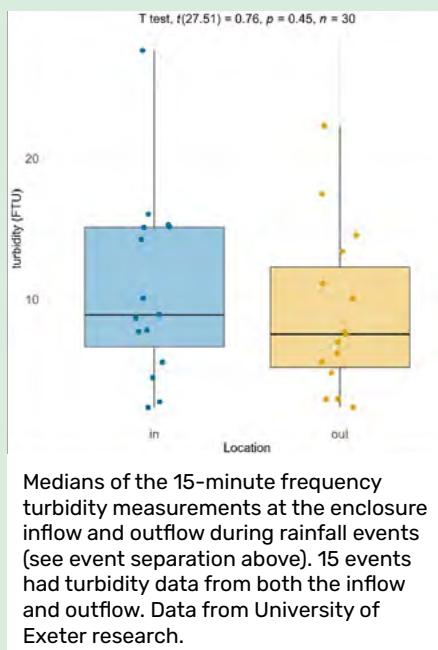

In addition to increases in surface water area, results show an increase in water depth within the site. At a single point in the main pond above dam 1, water depth has increased from circa 30 cm to circa 83cm over time.

Depth gauge board within the main beaver pond, showing increases in water depth following the construction of dam 1 and the slowing of water © Steve Oliver.

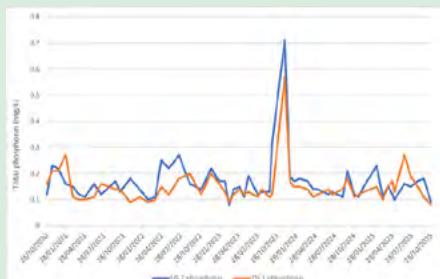
Whilst both the spatial and temporal extent of water storage in a beaver wetland varies, these results indicate there has been a significant increase in water storage which will bring associated drought resilience benefits.

Fixed point photography showing how beavers now help to retain valuable water resources on site. Left photo pre-beaver © Wayne Bennett. Right photo post-beaver © Steve Oliver.

HYDROLOGY: WATER QUALITY


A key research question was 'Do the wetlands created and modified by the reintroduced beavers have impacts on source water quality?' To assess this, University of Exeter and Wessex Water studied water samples to compare how the water quality differed between water coming into site and water leaving, having passed through the beaver wetland. Not all the data was significantly different when analysed, but some general trends were found.

Turbidity and Total Suspended Solid (TSS) data fluctuated greatly over time, but trends indicate levels of both were higher upstream than downstream of the beaver wetland. For example, differences in TSS concentrations were found to be significantly lower by 0.1mg/l at the outflow during high resolution 2 hourly sampling. Total phosphorus values (sources of which include agricultural runoff from fertilizers and animal waste, sewage and wastewater, natural weathering of rocks) were also mostly lower downstream.


Lower nitrate and higher nitrite concentrations at the outflow compared to the inflow indicate that nitrate is being reduced and denitrified by anaerobic bacteria

within the ponds. An increase at the downstream sampling point further supports this process. This has been observed by other researchers showing that, by providing a range of depths/oxygenation zones for both aerobic and anaerobic microbes, nitrogen can be efficiently cycled in beaver ponds, with some overall loss (from the aquatic system) as gas.

Dissolved organic carbon concentrations were generally found to be higher at the outflow compared to the inflow. This

reflects results from other studies showing that beaver activity creates wetlands rich in organic matter.

Graph produced by Wessex Water using Total phosphorus data collected from upstream and downstream of the beaver wetland. Overall, values are lower downstream which could reflect the nutrient retention and sequestration benefits of the wetland.

Results demonstrate that sediment dynamics both downstream and within beaver wetlands exhibit

spatio-temporal variability. However, whilst beavers can also create sediment fluxes due to their engineering activities, a key trend emerging is that during storm events, when erosive energy conditions and sediment influxes from the catchment are greatest, there is a filtering effect produced by beaver wetlands, resulting in reduced downstream fluxes. These dynamics have interesting implications for the role beavers could play in mitigating fluxes associated with non-point-source agricultural water pollution.

Findings from this research support evidence from other studies, highlighting the filtering effect beaver wetlands can have, particularly following heavy rainfall events.

Fixed point photography showing how a beaver dam can act as a sediment trap and filter water moving through the landscape Left: a newly created beaver dam, Right: the same dam 8 months later, showing significant amounts of trapped sediment © Steve Oliver

ECOLOGY: TREES

Young hazel regrowth after the tree was coppiced by beaver © Steve Oliver

The relationship between beavers and plants is a rhythm of nature that has held a beat for millions of years. Beavers are strictly herbivores, eating a wide variety of vegetation, which can vary through the seasons. In the spring and summer, up to 90% of their diet can be herbaceous bankside vegetation alongside aquatic plant life within the waterbody they are inhabiting. Beavers also feed on

trees (including bark, shoots and leaves), mostly during autumn through to early spring when other ground vegetation is less available. They use trees as construction material to build lodges and where they are engineering dams to modify the habitat to suit their needs. As a result, beavers have the ability to impact and influence vegetation and tree growth located near to water.

BEAVER AND TREE INTERACTIONS:

Beaver tree foraging activity was surveyed in 2022 following beaver introduction in 2021, and surveys were repeated again in 2023. The tree species foraged, proximity to water and level of interaction was recorded.

Tree interactions were classified into three categories: low, medium and high impact.

Low impact

interactions are categorised by fewer than 20 cuts on a tree's branches and stems, all $<7\text{cm}$ diameter and/or stripped of bark area <10 hands in area.

All photos © Steve Oliver

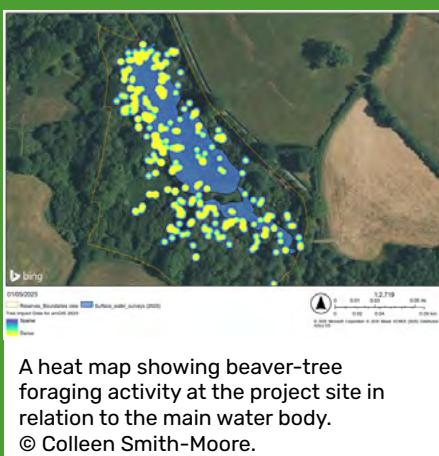
Medium impacts

are categorised by greater than 20 cuts on branches and stems, or with at least one $>7\text{cm}$ in diameter, and/or stripped bark of >10 hands, including felled trees of $<7\text{cm}$ diameter.

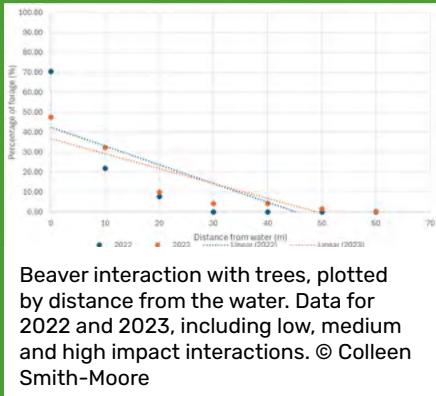
High impacts

are determined by interactions to stems of $>20\text{cm}$ diameter, either felled or noticeably incised beyond the cambium and into sapwood, not just bark layer.

ECOLOGY: TREES

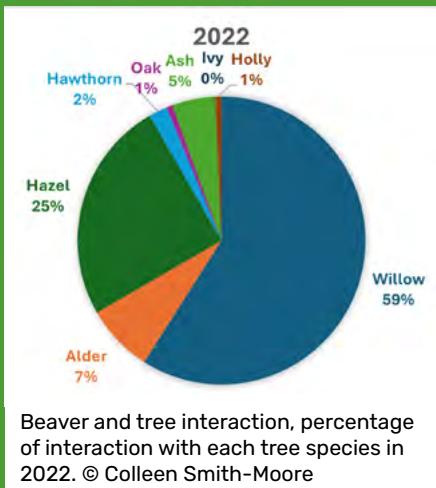


Woodland regeneration in progress with the emergence of new alder saplings following increased light conditions due to beaver tree coppicing © Steve Oliver


Evidence from previous studies elsewhere, highlights that beavers prefer foraging close to water where they feel safe, and studies at the project site also show this. In 2022 and 2023, 70.42% and 47.59% of beaver-tree interaction, respectively, happened either within the water, or on the edge of the water; listed as '0m' distance from water, and this was where high impact interactions were recorded. A further 21.83% (2022) and 32.23% (2023) of interactions occurred within the next 10 metres of water (0.1-10m).

In 2022, 100% of the foraging interaction occurred within 20 metres or less of the main water body. In 2023, this figure was 89.76% and the last 10.24% of interaction

happened between 20.1-60 metres. The majority of activity recorded away from the main water body followed small springs of water that feed the main water body. Beaver tree foraging activity and levels of interaction and impact



A heat map showing beaver-tree foraging activity at the project site in relation to the main water body.
© Colleen Smith-Moore.

are clearly shown to decrease the further you go from water.

The species of tree being foraged was also studied. In both 2022 and 2023 willow *Salix sp.* was the favoured foraged tree. In both years, 59% of the beaver tree interactions occurred on willow species. Alder accounted for just 7% of the trees foraged in 2022 and 5% in 2023, despite being an abundant species alongside willow.

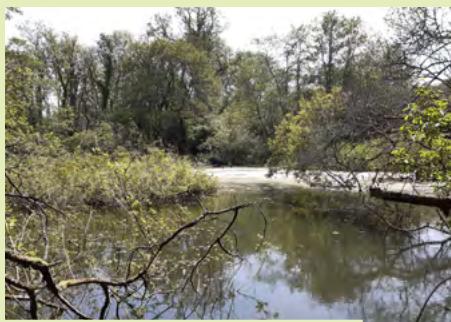
DIVERSIFYING TREE GROWTH AND AGE STRUCTURE:

Beaver foraging activity has resulted in some changes to tree growth stages and age structure on site. Before the introduction of beavers, the wet woodland was dominated by alder and willow trees of a similar age with little diversity in growth stages. Now that beavers are present, they are promoting a mix of growth stages, with some trees very much untouched, amongst others which have been coppiced, and are producing new young growth.

As shown, willow trees are a beaver's favourite tree to forage and they thrive on being coppiced, producing rapid amounts of regrowth in response. Beavers are the 'original coppicers' and plants like willow have co-evolved alongside them.

Woodland regeneration is also seen where coppiced trees allow light to reach the ground, triggering dormant seeds in the soil to germinate and produce new growth.

ECOLOGY: OTHER VEGETATION


Evolving beaver wetland and beaver
meadow creation © Steve Oliver

The network of beaver-created ponds joined to the river system has been shown to evolve over time, with various aquatic plants colonising these new watery habitats now that water and light

are readily available. Aquatic vegetation has gradually colonised the beaver ponds over time, in areas that would have previously dried up before beaver activity.

Broad-leaved pond weed *Potamogeton natans* has increased significantly © Steve Oliver

Beaver pond 1 with minimal aquatic vegetation in summer 2022 © Steve Oliver

Beaver pond 1 with significant increase in aquatic vegetation in summer 2024 © Steve Oliver

ECOLOGY: INVERTEBRATES

12 species of dragonflies and damselflies have now been found on site, up from six species recorded pre-beaver reintroduction

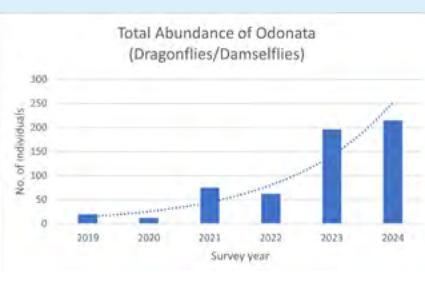
The Azure damselfly *Coenagrion puella* has seen an increase in numbers, along with other species such as the Emperor dragonfly *Anax imperator*. All are benefiting from increased water availability on site and the subsequent colonisation of aquatic vegetation, which provides ideal habitat for them to thrive.

Azure damselfly © Guy Edwardes/2020VISION

Beavers can have a significant impact on other species due to their activities and are well recognised as a keystone species. Established beaver-modified wetlands are known to be high in invertebrate biodiversity, largely due to the varied mix of micro-habitats created by beaver activity.

Riverfly monitoring has taken place and is ongoing to assess the effects of the beavers and their habitat modifications, on the freshwater macroinvertebrates in the project area.

Initial findings suggest that macroinvertebrate communities in locations unaffected by beaver activity remain unchanged, but areas surveyed where beavers have built dams, and water has been impounded, have undergone change. Beaver dams create slower flowing deeper water conditions upstream and invertebrate groups that prefer faster flowing water (e.g. mayfly larva) have disappeared from these immediate areas and still water groups (e.g. water scorpion, water boatman, pond skater) are slowly colonising. The change in community assemblage should not be seen as a negative, as the new still water habitat being created by the beavers is becoming a valuable freshwater habitat in its own right. Over time, this is likely to be colonised by further still water macroinvertebrate species and host a community that differs



Emperor dragonfly
© Ross Hoddinott/2020VISION

from those other areas where the streams flow faster and the typical flowing water fauna remains.

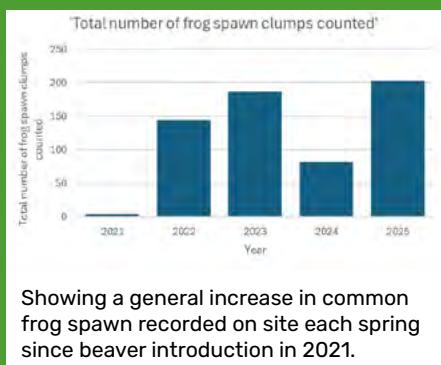
ODONATA (DRAGONFLIES AND DAMSELFLIES)

Dragonflies and damselflies have seen a clear increase in abundance since the introduction of beavers. The evolving beaver wetland provides an ever-increasing diversity of watery habitat for these insects to breed and the numbers of individuals have gone up as these insects take advantage of the habitat created. A transect line is walked and flying adults recorded as a way of monitoring change.

Graph showing the increase in abundance of Odonata since the introduction of beavers in 2021.
© Colleen Smith-Moore

ECOLOGY: AMPHIBIANS

Common frog © Steve Davis



Amphibians, such as toads, frogs and newts are likely to be impacted significantly by the presence of beavers, due to their reliance on freshwater for various stages of their life, including for breeding.

Changes in amphibian breeding distribution has occurred alongside habitat change.

COMMON FROG

Common frogs *Rana temporaria*, like other amphibians, use freshwater habitat for breeding and spawning in late winter and early spring. Changes in the amount and distribution of common frogspawn found on site each year following the introduction of beavers in February 2021 has been recorded.

So far, five years' worth of data indicate a significant rise in the amount of common frog spawn counted on site in the years following beaver introduction. 2024 was an anomaly to this trend, and this was likely due to the flood conditions found on site during much of the 2024 survey period, which made recording difficult. The number of different patches of frog spawn has increased each year, and all these increases have coincided with the rise in beaver damming activity and increased areas of suitable habitat for frogs to spawn in. The surface water of the study site has

Clumps of frog spawn found at the project site © Steve Oliver

approximately tripled in area since the introduction of beavers and their subsequent damming activity impounding water and creating dynamic ponds.

Amphibians, including common frog, are often seen to be one of the first vertebrates to arrive in newly created beaver ponds and make use of these dynamic habitats (Rosell & Campbell-Palmer, 2022), and this is clearly being shown at the study site.

The increase in shallow marginal habitat at the project site, resulting from beaver damming activity, is expected to provide greater amounts of suitable breeding habitat in years to come. This is predicted to lead to a further increase in the amounts of frog spawn counted in future surveys due to increased breeding success and the growth of the local common frog population.

ECOLOGY: AMPHIBIANS

Smooth newt eggs
© Adobe stock | 445212712

NEWTS

The distribution of breeding newts is also changing across the site. Again, the increase in shallow marginal habitat has provided greater amounts of suitable breeding habitat. In early 2025, evidence of breeding by small newts - such as palmate or smooth newt - was found over a greater expanse of the site than before the beaver reintroduction.

Palmate newt © Philip Precey

FROGSPAWN

The evolution of beaver-engineered ponds, especially on low-order streams such as the one at the Dorset Wildlife Trust enclosed beaver project site, can provide essential breeding habitat for frogs and toads, which is often lacking in the wider landscape. Ponds offer shallow, still water which is ideal for spawning, along with a safe refuge for froglets and toadlets.

Amphibian habitat

Water surface area images showing how habitat suitable for amphibians has increased from 2021 (top, pre-beaver) to 2025 (bottom, post-beaver now with 11 dams present).

ECOLOGY: FISH

Brown trout © Linda Pitkin/2020VISION

Fish, like most wildlife living in freshwater environments, have co-evolved with beavers over millions of years. Beavers modify water bodies at scale and therefore can have significant impacts on fish. For example, a beaver-felled tree with its branches lying in the water can be a haven for young fish, as well as providing shelter for various invertebrates, some of which will be food for fish. Their dams change the riverine landscape and at certain times if flow is low could present a barrier to fish movement, though fish can often navigate past beaver dams.

Fish surveys in and around the project area have highlighted the presence of several fish species, including brown trout *Salmo trutta*. Brown trout have been recorded (both pre and post-beaver) as present and successfully spawning just downstream of the beaver enclosure and associated ponds but in very low numbers and not recorded within the enclosure site. Several brown trout have now also been recorded within two of the beaver ponds connected to the river, both upstream of dams, which indicates movement of this species is occurring in this dynamic

habitat. Trout have not historically or currently been found upstream of the beaver project area and this could be due to the generally smaller and shallower habitat found here or because of the layer of silt obscuring the gravel, restricting spawning and juvenile habitat. Barriers in the landscape such as road culverts and weirs may also be a factor.

Several factors may influence fish movement within the survey area including a road culvert downstream of the site and the presence of beaver dams. There are now currently six beaver dams on the main watercourse within the beaver enclosure, all of which are dynamic structures that change through the seasons. These are likely to modify fish movement

Game Wildlife Conservation Trust and Wessex Water have gathered data on fish using various techniques, helping to discover which fish are found within the area and how they might be affected by the presence of beaver. © Steve Oliver

Roach © Jack Perks

within the survey area at certain times of the year depending on water flow conditions, but more investigation and data is needed to establish details of beaver dam and fish interactions in this area.

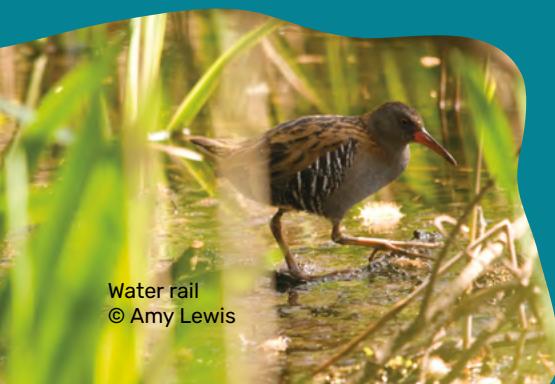
Eel *Anguilla anguilla*, roach *Rutilus rutilus* and bullhead *Cottus gobio* have also been recorded in the survey area. Good numbers of bullhead have been found both upstream and downstream of the beaver enclosure, but also within the beaver ponds themselves. Roach have also been found in all areas, and are particularly abundant in the beaver ponds, indicative of successful spawning in the area. The abundance of fish now inhabiting the beaver ponds has attracted predators including otter, grey heron and kingfisher.

ECOLOGY: BIRDS

Beavers returning to the UK can have a positive effect on bird life. Beavers act as 'ecosystem engineers' creating diverse wetlands and increasing habitat for various bird species including waterfowl, herons and kingfishers. Beaver dams and ponds provide new nesting sites, varied food sources, and complex wetland habitats. These have the potential to support more abundant and diverse bird populations, and this is being seen at the project site.

Over 40 different species of bird have been recorded at the site since the start of the project, many of which have been found to be breeding on site. Bird species being recorded more regularly include kingfisher, which are readily making use of the increased fishing potential provided by the expanding beaver wetland. Water rail are a brand new addition to the species list. This secretive wetland

bird is not currently known to breed on site but a number of individuals have been found using the evolving beaver wetland as a vital autumn and winter foraging resource.



A moorhen nest on a beaver pond at the Dorset Wildlife Trust project site.
© Steve Oliver

Moorhen and chicks © Joshua Copping,
All Rights Reserved

Moorhen breeding success has increased since beaver reintroduction, as the expanded wetland's greater complexity offers safer nesting and reduced predation.

Water rail
© Amy Lewis

Kingfisher are now regularly seen at the project site, one of many bird species utilising this evolving wetland habitat.

Kingfisher
© Jon Hawkins - Surrey Hills Photography

ECOLOGY: BATS

Soprano pipistrelle © Nick Tomlinson

There are 18 species of bat resident in the UK, 17 of which breed here. UK bats feed on insects and utilise a range of habitats across the landscape. They are an indicator of the health of the environment; their requirement for large numbers of insects, diverse habitats, and healthy water systems means their presence signals the overall health of these ecosystems. So, if there is a thriving bat population living in an area, it is a positive sign that the environment is able to support a rich range of other wildlife.

Bat acoustic monitoring has occurred at the project site since 2019 to record changes in bat

activity and data strongly indicates there has been an increase in bat presence utilising the site post beaver reintroduction. Bat activity was recorded at three locations, with acoustic detectors being deployed from June to September. There was a large increase in bat activity comparing pre and post beaver introduction, shown in figure two, for location one. For example, in June 2019, the mean number of bat passes per night was 17.08, whereas in 2024 it was 527.27. Averaged across all four months, the mean bat passes per night increased from 21.61 in 2019 to 276.57 in 2024—an 1100% rise following beaver reintroduction. Location two showed similar results, but

location three is lacking in data due to detector failure and will be analysed once the 2025 data is collated.

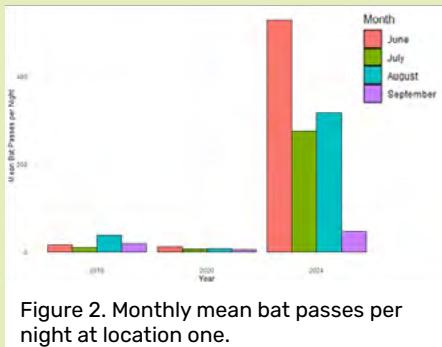


Figure 2. Monthly mean bat passes per night at location one.

Overall, the results from the acoustic monitoring show there has been an increase in bat activity post beaver reintroduction, with the majority of this activity attributable to soprano pipistrelle *Pipistrellus pygmaeus* and common pipistrelle *Pipistrellus pipistrellus*. Soprano pipistrelle was the most recorded bat species and thus contributed most to the huge increase in activity across both locations on site. The majority of their dietary prey items are diptera, or true flies, of which the majority have aquatic larval stages. Hence they are particularly associated with foraging near aquatic habitats, as shown by Rachwald et al 2016. Their foraging patterns are also often linked to foraging in and around the edges of vegetation. So, the increase in surface water and more vegetation edges created by beaver modifications have likely led to this increase in bat activity.

Bat habitat

Water surface area images showing how bat-suitable foraging habitat has increased from 2021 (top, pre-beaver) which has coincided with increases in bat activity recorded

ENGAGING COMMUNITIES

Over 4,200 people have been directly engaged

© Colleen Smith-Moore

The task of raising awareness and understanding about beavers and what it means to live alongside these influential mammals is key to our successful coexistence. The enclosed beaver site has provided a vital hub for learning all about beavers in a local setting, to the benefit of a wide variety of community groups, including key stakeholders from across the county and further afield.

Over 250 engagement events have taken place so far, highlighting

the desire and need from us all to increase our knowledge of this species and its return to our landscapes. Over 4,200 people have been directly engaged in expert-led guided site visits, presentations/talks and workshops. Publications, webpages and social media platforms have helped to share the story more widely, and all forms of engagement will continue to inform local communities in future, as we start to learn to live alongside beavers once again.

FURTHER RESEARCH AND THE FUTURE OF THE PROJECT

Research in and around the enclosed beaver project site is ongoing and the project has now received a licence extension from Natural England for an additional five years until 2030. Beavers clearly have the ability to create dynamic, ever-changing wetlands, especially in situations where they are building dams, and increasing amounts of data gathered in future years will help to form a clearer and more accurate picture of what impacts beavers have on their environment with regards to hydrology and biodiversity, and what it means to have these ecosystem engineers and keystone species back in Dorset.

At the same time as the management and studies on this site continue, the Government has now established a process through Natural England for licencing wild (unenclosed) beaver releases and the first such licence in England was issued for the Studland area in Dorset in early 2025. Further proposals for licensed releases in Dorset are at the feasibility stage and Dorset Wildlife Trust is leading on the work looking at the feasibility of free-living beaver releases in the Frome catchment.

Meanwhile other beaver populations (unlicensed and from unknown sources) are present in the Dorset Stour and Hampshire Avon catchments and these have provided valuable insights about the likely activities, impacts and human reactions to beavers in different catchments.

© James Burland

ACKNOWLEDGEMENTS AND THANKS

This local project would not be possible without the generous support of Dorset Wildlife Trust members and major donors helping to fund this vital work.

It would also not have been possible without the invaluable input of expertise from partner organisations and individuals. Special thanks go to Natural England, NatureScot, University of Exeter, Beaver Trust, Derek Gow Consultancy, Dorset Catchment

Partnerships, Wessex Water, Game & Wildlife Conservation Trust, John Davy-Bowker, Angus Menzies and David Gibbs for their contribution and ongoing support of the project and its research.

A special mention and thanks must also go to the enthusiastic and committed team of volunteers whose ongoing support has been invaluable to the success of the project.

With thanks to our partners

**Dorset
Wildlife Trust**

Wessex Water
YTL GROUP

